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TWENTY-ONE A. Amino Acids with Electrically Charged Side Chains
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B. Amino Acids with Polar Uncharged Side Chains C. Special Cases
https://en.wikipedia.org/wiki/Amin . . . . . . ) .
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e ® ® @O © e
233 0O 2200 O 2160 O 28 O : 193 0 23 1953 O

O/ O/ @ O/ @ o/ @ O/ @ B, O_/ @1047
NH3 NH3 NH3 NH3 3 l\llg'iB NHz

H O 8.96 8.76 9.00

OH Se ©®
4 52

NH;

D. Amino Acids with Hydrophobic Side Chains

Alanine Valine Isoleucine Leucine Methionine Phenylalanine Tyrosine Tryptophan
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Homology:
More than just genes!

| Ancestral gene

HOMOLOGOUS genes

share a common ancestor

A7\ /S

Modern genes (all homologous)



Homology:
More than just genes!

SNYFMKIIQLLDDY¥PKCFY VGADNVGSKOMOQ IRMS
SNYFLCKIIQLLDDY¥PKCF IVGADN VESKOMOO IRMS
SNYFLKIIQLLDDY¥PKCFIVGADYVESKOMOT IRLS
SNYFLKITQOLLNDYPKCFIVGADNVGSKOMOT IRL S
DNA / protein “residues” AQYFTKYVELFDEFPKCFIVGADNVGSKOMONIRT S
(nucleotides and amino acids) KLETIEKATKLFTTY¥DKMIVAEADEVGS SOLOKIRKS
can also be homologous NVEIBKATKLETTY¥DKMIVAEADFVGS SOLOKIRKS
QMYIEKLSSLIQQ¥SKILIVHVDNVGSNOMASVRKS
VDEVAELTEKLKTHKT ITIANIEGFP ADKLHE IRKK
IEEVKELEQKLREYHT ITIANIEGFPADKLHDIRKK

Each column is a homologous position within the proteins



For many applications of sequence analysis, we would like
to know which residues (nucleotides, amino acids) are
homologous between sequences

MRTEPLIG
Functional domain prediction

]_V_[R E P L I G ‘ Distance/tree estimation

Structure prediction
MRTEP G




In a world where substitutions were the only
type of mutation, the homology of residues
would be obvious

MRTEPLIG

MRSEPLIG MRTEPVLG

MRSEPLIA MREEPLIG MKTEPVLG MRTEPFLG



MRTEPLIG

IME < BBl e G

MRTEP G Each column contains a set of residues
S — that are homologous

DR bl il

This 1s a sequence alignment (albeit
a trivial one!)

MREEPLIG

MR =i
M
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But Life 1s Not so Easy...

Insertions and deletions (and more complex changes) can
complicate the process

MRTEPP G




The process

MRTEPLIG

T3—S L6 —-V; 17 —-L; I(AG)3

MRSEPLIG MRAGTEPVLG

A4-6

MRSEPLIG MRSIG MKAGTEPVLG MRAGTHLG



MR--TEPLIG

MR-- EPLIG
BEEEEEEE To bring homologous residues together,
AR we need to perform a SEQUENCE

IVISVNCHNTHERNEN  ALIGNMENT by introducing gap
BRI characters

MR 1G

But how do we get to an alignment, and
how do we decide which 1s best?

RN R R

MRAGTE --G



Keys to sequence alignment

1. ASCORING SYSTEM for an alignment of two or more
sequences
* Isthe alignment any good?
* Is the similarity between the two sequences better than random?

2. An ALGORITHM to find the best alignment, or a set of
highly probable alignments

 What is the complexity of finding the optimal solution?
 To what extent can we trade away optimality for efficiency?

11



Elements of a scoring system
Residue frequencies f(x,) in the set of sequences
Transition probabilities p(Xi,Xj) between residues
A scheme G for penalizing gaps

A formula for computing the score, given F, P, and G

12



Part the first: substitution probabilities

1. Build a reference dataset with certain desirable
properties

2. Construct alignments (?!) of the sequences within this
dataset

3. Compute the probabilities of different substitutions based
on observed frequencies

13
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PROTEIN SEQUEN(}
and STRUCTURE

Margaret O. Dayhoff
_am Richard V. Eck

I Marie A. Chang

R. Sochard

NATIONAL BioMEDICAL RESEARCH FOUNDATION

8600 16TH STREET
Silver \’pn‘nv\v, Maryland

65 proteln sequences
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“Responding to the sudden increase in the rate of
nucleic acid sequencing, Dr. Dayhoff established an
online computer database and a sophisticated
retrieval system, accessible by phone to outside
users, in September 1980. A home computer
system had been used to prove the feasibility of this
approach. This nucleic acid sequence database is
currently one of the largest in the world, containing
over 2 000 000 sequenced nucleotides with
references and annotations. Since September 1981,
the Protein Sequence Database has also been
available on-line as well as on magnetic tape.”

http://www.dayhoff.cc/MODBiography.html 16



Other Dayhott

*F1rst phylogenetic tree
calculated using a computer

*Origins of life / Early
planetary evolution

* Cancer biology

*Protein families and
superfamilies

Dayhoff (1969) Sci Am



The first bioinformatics tool

COMPROTEIN: A COMPUTER PROGRAM TO AID T T

PRIMARY PROTEIN STRUCTURE DETERMINATION*

of overlap posi

Margaret Oakley Dayhoff and Robert S. Ledley
National Biomedical Research Foundation
Silver Spring, Maryland

and move match

Is PCOM or
p1 p2 p3 p4 ps

) T e i R T T ) (A [ P SRR S LT | | Y
R A B D B,,A C A C, D X A C B, D B D, B A D" "'C A, 6Z Are there more elements
| J 1 ]| [T Snearr - i L e - ] used up ? in QCOM than in PCOM ?

q, q, a4 Adc L g Shift g to right the Shift q to right until
. { ) minimum amo: so that all QCOM elements
list to empty all these PCOM ele- can match elements of p
list PCOM or ments can appear in or extend past the end of
QCOM., the nonoverlapping P.
first portion of p. Deduce the new number of
Deduce new number of positions in the tentative
Maximum over= positions in the ten=~ maximum overlap and the
lap is found tative maximum over= content of the first p
in MV, lap and the content group.
See example I. of the first p group. See example III,
See example II,

: = o, ; j-‘ === S . ¢
IBM 7090 ‘:g._- - y = ',,_—' A : Are there any elements

in the tentative p structure ?

No overlap of p and q.

18
Proceedings of the Fall Joint Computer Conference, 1962



And...

The amino acid alphabet

ACDEFGHIKLMNPQRSTVWY

https://www.whatisbiotechnology.org/index.php/people/summary/Dayhoff

19



Matrix

Building a Substitution

o O

o O

o O

o O

o -

o O

o O

O O

o

o O

o O

o O

o O

o -

o O

o O

O O

o O

o O

o O

o O

o -

o O

o O

O O

o -

o O

o -

(S

o O

o O

o O

o O

o O

o O

o O

o O

O O

[

O O

O O

o

o

o

o

o

o

o O

o -

o O

o O

o O

o O

o O

AEZAVOMOIHANX S LAV EHZ >

20

Some measure of change from V to R



Building a Substitution Matrix

* One way 1s to define amino acids based on their
chemical and/or structural properties, and
build a matrix based on their similarity

Isoleucine Leucine | Tryptophan

Isoleucine

Leucine

Tryptophan

ee.g. Grantham matrix (1974). Doesn’t reflect
the evolutionary process — why not?

21



Percent Accepted Mutation (PAM)

* An ‘accepted’ mutation changes one or more amino acids
and doesn’t lead to insta-death or selective costs

« PAMn matrix — n substitutions per 100 sites

PAM1: Sequences with 1 substitution / 100 sites
PAM250: Sequences with 250 substitutions / 100 sites

Um, what?

22



Building the PAM1 matrix

* Assume that amino acid substitution i1s a Markovian process

(?)

* Reference data set (1978): set of protein alignments, 71
families in total

* Consider only blocks — ungapped alignment regions > 85%
1dentical (minimize double substitutions!)

23



Map onto a PHYLOGENETIC TREE that shows the history of
the sequences

1T AAAILGMVFP 86
2 AAAILGMVEQ

PN
3 AAGILGIVWP
4 AAGILGIVFP /g‘Q /‘2"\
1 2 3 4

Count this change only
once!

Treat substitutions as REVERSIBLE (so our matrix will be symmetric)
Me1

Also compute the vector of frequencies:
f(A) =10/40 =0.25
f(F) =3/40 =0.075

etc...
24



(1) Matrix of Counts

D

A 31

A ¢ :
D

DIAGONALS (no change) dominate
in closely related sequences

25



(2) Matrix of Probabilities

Normalize by row, all row sums == 1

A C D Sum

A 0.97 0.0002 0.005 1.0

B C 0.0002 0.995 0.0003 1.0
D 0.005 0.0003 0.982 1.0

What is the relative rate of change of A < C, or “change” between A «> A?

26



(3) Matrix of Scaled Probabilities
(1 PAM)

The amount of sequence change in B 1s dependent on
whatever sequences we used to create our dataset

More-distant sequences: diagonals smaller, off-diagonals
larger

We want to rescale the matrix based on frequencies so
the expected number of amino-acid substitutions per site
1s equal to 0.01

Al



(3) Matrix of Scaled Probabilities (1 PAM)

Each off-diagonal element 1s multiplied by ¢, where

Total amount of
change in the matrix

0.01 %
oo

Frequency of amino acid a

Total probability of a changing to b

Change diagonals so each row sums to 1.0, and the rest of the matrix sums to 1 PAM

28



B

C

Total amount of change = 777

A C D Sum
C (ON0]0]0)% 0.995 0.0003 1.0
D 0.005 0.0003 0.982 1.0

\ 4

Total amount of change = 0.01 substitutions per site

A C D
C 0.00002 0.9985 0.00003

D 0.0005 0.00003 0.9911

29



https://cs.rice.edu/~ogilvie/comp571/pam/
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ORIGINAL AMINO ACID

{ A R N D C
Ala| Argl Asn] Asp{ Cys
9t 10 3

Ala|9867 2

Arg
Asn
Asp
Cys
Gin
Glu
Gly
His
11e
Leu
Lys
Het

Phe

Figure 82(!): PAM1 probability matrix
(divide by 10,000 to get probabilities)
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For higher-order PAM matrices:
PAMpn = (PAM1)"

For higher-order PAM matrices, values on the diagonal will
decrease, while off-diagonals will increase

(greater evolutionary distance)

Exponentiation (rather than changing the scaling constant) 1s
necessary to properly account for multiple substitutions

31



(4) The last step

* We need to generate a matrix that captures the probability of
seeing residues 1 and j together due to homology, relative to a
random expectation

More frequent than random: D > 0
Random: D=0
Less frequent than random: D <0

' =8 log —22 —
| f(a)f (D)

32
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https://bioinformaticamente.com/2020/10/22/alignment-algorithms/



Thoughts on PAM

Limitations?



Accuracy 1s dependent on input data!

Millions of nucleotides
(Related to # of proteins)

WAG matrix
(Whelan And Goldman)

JTT matrix
(Jones, Taylor, Thornton)

PAM matrix here

http://www.innovations-report.com/bilder_neu/48071_data.jpg
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Bases

1,000,000,000
000,000

10,000,000,000,
000

100,000,000,000

1,000,000,000

10,000,000

2000 2010

https://www.ncbi.nlm.nih.gov/genbank/statistics/



PAMpn = (PAM1)"

Extrapolation!!!



What if the tree is wrong?

38



The BLOSUM matrix —
clusters instead of trees

Subdivide homologous sequences into CLUSTERS with at least L% identity
Count substitutions between clusters only

1T AAAILGMVFP
2 AAAILGMVFQ

3 AAGILGIVWP
4 AAGILGIVFP

>

39
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Log-odds matrix: as before!

Better than random: D >0
Random: D=0
Worse than random: D <0

41



BLOSUMG62
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Why BLOSUM?

 No reliance on an inferred tree

* No extrapolation; differences are observed directly from
alignments with at least L% divergence

* Higher accuracy relative to PAM 1n detecting remote
homologs

43



BLOSUM x Matrices

x = the % 1dentity within blocks

BLOSUM 62 1s based on more-similar sequences than

BLOSUM 45
(opposite of PAM!)

44



Choosing a matrix

* Matrices can be compared based on their relative entropy

* Very similar sequences: high entropy
* As distance approaches «, H approaches O

Altschul (1991) J Mol Biol
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Difference between BLOSUMG62 and PAM160
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BLOSUM 62 substitution matrix (Lower) and difference matrix (Upper) obtained by subtracting the pAM 160 matrix position by position.

FiG. 2.
These matrices have identical relative entropies (0.70); the expected value of BLOSUM 62 is —0.52; that for PAM 160 is —0.57.
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PAM

distance

0
10
20)
30
40
H0)
60
70
80
90

100
I 10
120
130
140
150
160
170

Altschul (1991) J Mol Biol

Table 1
The relative entropy H of PAM matrices

PAM
H (bits) distance H (bits)

417 180 0-60
343 190 0-55
2:95 200 051
2:57 210 (48
2:26 220 r45
2:00 230 042
179 240 -39
160 250 0-36
1-44 260 (34
1-30 270 032
118 280 0-30
1-08 290 028

027

N.a8 ‘

age (Fig. 1). Based on relative entr:)“;;y, the pPAM 250 matrix
is comparable to BLOSUM 45 with relative entropy of =0.4 bit,
while pPAM 120 is comparable to BLosUM 80 with relative
entropy of =1 bit. BLOSUM 62 (Fig. 2 Lower) is intermediate
in both clustering percentage and relative entropy (0.7 bit)
and is comparable to PAM 160. Matrices with comparable
relative entropies also have similar expected scores.

Henikoff and Henikoff (1992) Proc Natl Acad Sci USA
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There’s more than + 10 ways to do it

Inference g Blosum62, CpRev. . Partitioned +I+G

Dayhoff, DUMMY. i models can
FLU.HIVb. HIVw, 1 be

JTT. JonesDCMUT, specified
LG, Mtart, Mtmam,

Mtrev. Mtzoa, PMB.

RtRev, STMREV, VT,

Tree inference software
(coming later!)

Models:
Different originating datasets
(HIVDb)
Larger datasets (JTT)
Fancy likelihoods (WAG, LG)

Arenas (2015) Front Genet



Great. We can score alignments.

But what about gaps??

QVKQIYKTPPIKYFGGENFSQILPDPSKPSKRSPIEDLLE-———=————
QVKOQIYKTPPIK-———————————— D FGGEFNFSQIL

It’s a lot more difficult to build rigorous statistics for gaps

49



GAP Penalties!
* Two types:
LINEAR:

AFFINE:

Gap opening
penalty

Gap
length

Gap extension
penalty

50



Computing an Alignment Score

MEAGTEPVLG
MRAGTEL--G

S(X)= DM’M +DK’R +DA’A +DG’G +D,, +DE’E +DP,L +y(g = 2)+DG,G

Using PAM250, a gap opening penalty of 5 and a gap extension
penalty of 2,

S(X)=6+34+24+54+3+44+(3)+(-7)+5

=18

51



MRAGTEL--G

S(X)=6+3+2+5+3+4+(-3)+(-7)+5

Contrast with alignment A,:

MEAGTEPVLG
A = S(Y)=13
2 MRA--GTELG

SY)=6+3+2+(-7)+0+0+(-2)+6+5

52



um, DNA?

Something like this usually works pretty well:

A G C T
A 1 -1 -1 -1
G -1 1 -1 -1
C -1 -1 1 -1
T -1 -1 -1 1
Or possibly this:
A G C T

53



For protein-coding sequences, 1t 1s most common
to align the amino acid sequences, then match
the corresponding DNA codons against this

sequence

sWhy?

54



The goal of sequence alignment 1s (usually) to find the best
alignment score — maximize the probability of observing
aligned residues, relative to the null model

But optimal methods are slow — as you will see!

55
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